

ABE OMOROGBE

• Product Manager at Postgres AI
team at Microsoft.

• My previous experiences includes
working Azure AI and Databricks

 @_aiabe
 linkedin.com/in/abeomor
 github.com/AbeOmor

Has ChatGPT or Copilot
ever given you an

insufficient answer?

5Microsoft Fabric Community Conference 2025

Agenda – Build AI Legal App on Postgres

2

3

4

5

Search context –

Semantic Search

US Caselaw Dataset

Advanced RAG
architectures

6

Basic RAG

Common Problems with

RAG

Why Postgres?

1

Agenda – Build AI Legal App on Postgres

Why Postgres?

1

Benefits of Postgres for your GenAI app?

PostgreSQL offer features critical in
building an AI app:

• AI model integration (azure_ai)

• Vector Search Capabilities (pgvector)

• Unstructured data support (JSONB)

• Graph Database (AGE)

• Geospatial Data support

• Extensive OSS frameworks

• Vibrant community and support

Postgres is the #1 developer database according to StackOverflow

Legal Research Copilot app

• You’re a legal researcher or lawyer
focusing on cases in Washington
state.

• You need the app to be able to
find relevant previous cases to
support your tenant rights and
property dispute arguments.

Agenda – Build AI Legal App on Postgres

2

US Caselaw Dataset

Why Postgres?

1

Caselaw Dataset (Washington State)

106,177
unique cases

7
legal reporters

581,403
pages scanned

https://case.law/caselaw/#washington

The Data

Agenda – Build AI Legal App on Postgres

2

3

Search context –

Semantic Search

US Caselaw Dataset

Why Postgres?

1

How do we use this data to start
building this Legal Copilot App

Search Pattern - ILIKE

Search Phrase – FULL TEXT

So how do we solve this?

Agenda – Build AI Legal App on Postgres

2

3

Search context –

Semantic Search

US Caselaw Dataset

Why Postgres?

1

Vectors 101

Vector 101

• Lists of numbers that represent
items in a high-dimensional
space.

• For example, a vector
representing the string “dogs"
might be [0.7, 0.8, 0.5].

• Each number in the vector is a
dimension of the space.

Generating vectors

Use a model to generate vectors for items:

Input → Model → Vector
"dog" word2vec [0.017198, -0.007493, -0.057982, ..]
"cat" word2vec [0.004059, 0.06719, -0.093874, ...]

Model Input types Dimensions
Word2Vec Word 50-300
OpenAI text-embedding-3 Text 256-3072
Cohere embed-v4.0 Text 256-1536
Azure Computer Vision Multi-modal Text or Image 1024

Popular models (find more on HuggingFace)

https://huggingface.co/spaces/mteb/leaderboard

Visualize Vector

https://projector.tensorflow.org/

https://projector.tensorflow.org/

Storing vectors in Postgres table

-- Add Embeddings
ALTER TABLE cases ADD COLUMN opinions_vector vector(1536);
UPDATE cases
SET opinions_vector = azure_openai.create_embeddings('text-embedding-3-small',
name || opinion, max_attempts => 5, retry_delay_ms => 500)::vector
WHERE opinions_vector IS NULL;

Storing vectors in Postgres table

-- Add Embeddings
ALTER TABLE cases ADD COLUMN opinions_vector vector(1536);
UPDATE cases
SET opinions_vector = azure_openai.create_embeddings('text-embedding-3-small',
name || opinion, max_attempts => 5, retry_delay_ms => 500)::vector
WHERE opinions_vector IS NULL;

pgvector

azure_ai

Search Phrase – Vector Search

Agenda – Build AI Legal App on Postgres

2

3

4Search context –

Semantic Search

US Caselaw Dataset

Basic RAG

Why Postgres?

1

RAG 101

RAG stands for Retrieval-Augmented
Generation. It's a technique used to enhance

the output of large language models (LLMs) by
integrating external knowledge sources.

Two Problems in Information Retrieval

Problem #1: Scale
 Efficiently scaling vector

stores to 1M+ of vectors is
hard.

Problem #2: Accuracy
Quality of GenAI app responses

and vector search accuracy
need to improve.

Solving Problem #1 – Scale
with Vector Indexing

IVFFlat

• Clusters vectors by applying k-means clustering.

• Memory efficient but requires index rebuilds.

Vector indexes popular today

HNSW

• Builds a multi-layer graph with long and short

connections between the vectors.

• The graph can be incrementally updated.

IVFFlat

• Clusters vectors by applying k-means clustering.

• Memory efficient but requires index rebuilds.

Vector indexes popular today

HNSW

• Builds a multi-layer graph with long and short

connections between the vectors.

• The graph can be incrementally updated.

Generally speaking… IVFFLAT does its best
work for larger datasets with low

dimensionality.

Generally speaking… HNSW does its best work
for smaller datasets with high dimensionality.

IVFFlat

• Clusters vectors by applying k-means clustering.

• Memory efficient but requires index rebuilds.

Vector indexes popular today

HNSW

• Builds a multi-layer graph with long and short

connections between the vectors.

• The graph can be incrementally updated.

Generally speaking… IVFFLAT does its best
work for larger datasets with low

dimensionality.

Generally speaking… HNSW does its best work
for smaller datasets with high dimensionality.

What do you do for large datasets
with high dimensionality?

RAM
Compressed vectors

Optimized storage

SSD
Full vectors + graph

Large Vectors
{ D1, D2, D3, D4, D5, …, D99, D100 }

Vector compression

Quantization

Compressed Vectors
{ D1, D2 .., D100 }

DiskANN Vector Index

Highly performant, scalable, and
accurate index for vectors

Superior to IVFLAT and HNSW

Reduced memory footprint with
quantization and storing SSD

Huge cost savings at scale due to
reduced memory footprint.

DiskANN vs HNSW index size

Using DiskANN

Now, let’s dive into
DiskANN for your vector
data

We can create an index on
the vector column, so we
can do faster searching on
the vector data.

CREATE INDEX ON cases USING diskann
(opinion_vec vector_cosine_ops)

-- Create DiskANN index to improve search
times

Solving Problem #2 – Accuracy
with Advanced RAG architectures

Agenda – Build AI Legal App on Postgres

2

3

4

5

Search context –

Semantic Search

US Caselaw Dataset

Advanced RAG
architectures

6

Basic RAG

Common Problems with

RAG

Why Postgres?

1

Improving Accuracy of GenAI apps

Basic RAG

• Chunking strategies

• Bigger embeddings

• Query rewriting

• Hybrid search

• Metadata filtering

Advanced RAG

• Semantic Ranking

• Hierarchical summarization
(RAPTOR)

• Knowledge graphs (GraphRAG)

• Agentic systems

GraphRAG
Overview

Data

Graph
extraction

“Create a quiz with
10 questions based

on xyz data”

Graph
query generation

Entity summarization

1

2

3
Graph

Project GraphRAG: aka.ms/graphrag

GraphRAG Steps

1. Graph extraction

2. Entity summarization

3. Graph query generation at query
time

Pre-extracted citation graph
Entity summarization
Specialized graph query

Legal Research Copilot Solution

1

2

3

Apache AGE
Graph database extension for PostgreSQL

Graph database
Plugin for PG

Cypher + SQL
Hybrid Queries

Fast Graph
Processing

Graph Visualization
& Analytics

Example Constructed Case Graph

Advanced Retrieval Technique - GraphRAG

GraphRAG uses knowledge
graphs to improve results in
complex scenarios, by
leveraging relationships

For example, “Water leaking
into the apartment from the
floor above. What are the
prominent legal precedents in
Washington on this problem?”

graph AS (

 SELECT * from vector_search_ranked

 JOIN cypher('case_graph', $$

 MATCH ()-[r]->(n)

 RETURN n.case_id, COUNT(r) AS refs

 $$) as graph_query(case_id TEXT, refs
BIGINT)

 ON vector_search_ranked.id =
graph_query.case_id

)

Use RRF to combine
Graph and
Reranked results.

GraphRAG Solution Accelerator for Postgres

Overview
• Legal Research Copilot app
• U.S. Case Law dataset (0.5 million cases)

Available Now!
• Blog: aka.ms/pg-graphrag
• Repo: aka.ms/pg-graphrag-repo

Data

“Water leaking
from the floor

above…”

User query

embeddings

Chat

Apache AGE

extension

Prompt + context

Graph + vector

database

GraphRAG

Graph

Summarization

Vector search

+ graph query

Azure Database
for PostgreSQL OpenAI

Extensions

JSONB

Full text

search Geospatial

Rich

indexing

Rich Data

types

ACID

Constraints

Management

Automation

Extension

support

Global

reach

Security

Scale up

& out

High

Availability

Compliance

Intelligent

performance

Ecosystem

integration

AIAzure Database
for PostgreSQL:
AI-Ready
for Enterprise
Applications

More Resources

Azure Postgres and AI Agents
• aka.ms/pg-ai-agents-blog

Postgres AI Solution Accelerators
• aka.ms/postgres-semantic-ranker

• aka.ms/postgres-graphrag-solution

• aka.ms/pg-byoac-docs

Read the Azure Postgres blog
• aka.ms/azurepostgresblog

https://aka.ms/postgres-semantic-ranker
https://aka.ms/postgres-semantic-ranker
https://aka.ms/postgres-semantic-ranker
https://aka.ms/postgres-semantic-ranker
https://aka.ms/postgres-semantic-ranker
https://aka.ms/postgres-semantic-ranker
https://aka.ms/postgres-graphrag-solution
https://aka.ms/postgres-graphrag-solution
https://aka.ms/postgres-graphrag-solution
https://aka.ms/postgres-graphrag-solution
https://aka.ms/postgres-graphrag-solution
https://aka.ms/postgres-graphrag-solution
aka.ms/azurepostgresblog
aka.ms/azurepostgresblog

	Intro
	Slide 1
	Slide 2: ABE OMOROGBE
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Agenda – Build AI Legal App on Postgres

	Why PG
	Slide 7: Agenda – Build AI Legal App on Postgres
	Slide 8

	Data we are using
	Slide 9
	Slide 10: Agenda – Build AI Legal App on Postgres
	Slide 11
	Slide 12: The Data

	Types of Search
	Slide 13: Agenda – Build AI Legal App on Postgres
	Slide 14: How do we use this data to start building this Legal Copilot App
	Slide 15: Search Pattern - ILIKE
	Slide 16: Search Phrase – FULL TEXT
	Slide 17: So how do we solve this?

	Vector 101
	Slide 18: Agenda – Build AI Legal App on Postgres
	Slide 19: Vector 101
	Slide 20: Generating vectors
	Slide 21
	Slide 22: Storing vectors in Postgres table
	Slide 23: Storing vectors in Postgres table
	Slide 24: Search Phrase – Vector Search

	Basic RAG
	Slide 25: Agenda – Build AI Legal App on Postgres
	Slide 26: RAG 101
	Slide 27: Two Problems in Information Retrieval

	DiskANN
	Slide 28: Solving Problem #1 – Scale with Vector Indexing
	Slide 29: Vector indexes popular today
	Slide 30: Vector indexes popular today
	Slide 31: Vector indexes popular today
	Slide 32: DiskANN Vector Index
	Slide 33: DiskANN vs HNSW index size
	Slide 34: Using DiskANN

	GraphRAG
	Slide 36
	Slide 37: Agenda – Build AI Legal App on Postgres
	Slide 38: Improving Accuracy of GenAI apps
	Slide 39: GraphRAG Overview
	Slide 40: GraphRAG Steps
	Slide 41
	Slide 42: Example Constructed Case Graph
	Slide 43: Advanced Retrieval Technique - GraphRAG
	Slide 44
	Slide 45
	Slide 46: GraphRAG Solution Accelerator for Postgres
	Slide 47
	Slide 48

