

POSETTE: An Event for Postgres 2025

Building Intelligent Applications with Graph-Based RAG on PostgreSQL

Abe Omorogbe

Microsoft, Senior PM

June 10-12, 2025

#PosetteConf

ABE OMOROGBE

- Product Manager at Postgres Al team at Microsoft.
- My previous experiences includes working Azure AI and Databricks

- \times · @_aiabe
- in · linkedin.com/in/abeomor
- **•** github.com/AbeOmor

Has ChatGPT or Copilot ever given you an insufficient answer? As of now, there is no public information indicating that Abe Omorogbe is scheduled to give a talk at POSETTE: An Event for Postgres 2025. While he is listed as a member of the organizing team for the event, the official schedule and speaker lineup have not been released yet. [posetteconf.com +7] [posetteconf.com]

The schedule for POSETTE 2025 is expected to be announced in March 2025, following the timeline from previous years . Once the schedule is published, it will be available on the POSETTE website, where you can find details about all the sessions and speakers. posetteconf.com posetteconf.com +7

If you're interested in updates about the event, including speaker announcements and session details, you can subscribe to notifications on the POSETTE website.

BUSINESS INSIDER

7 Subscribe

DOW JONES 7 +0.01% NASDAQ 7 +0.53% S&P 500 7 +0.16% AAPL 7 +1.27% NVDA -0.53% MSFT 7 +0.34% AMZN 7 +1.49% META 7 +1.2% TSLA 7 +2.9%

AI

Al chatbots spew out nonsense too often. But there's a solution: retrieval-augmented generation.

By Matthew S. Smith

128.4K Followers

Al search engines are confidently wrong more than half the time when they cite sources, study finds

Over 60% of AI chatbot responses are wrong, study finds

Gen Al's Accuracy Problems Aren't Going Away Anytime Soon, Researchers Say

Al Hallucinations: Why Your Chatbot Might Be Lying to You

Agenda – Build Al Legal App on Postgres

Ⅲ

Benefits of Postgres for your GenAl app?

Postgres is the **#1 developer database** according to StackOverflow

PostgreSQL offer features critical in building an AI app:

- AI model integration (azure_ai)
- Vector Search Capabilities (pgvector)
- Unstructured data support (JSONB)
- Graph Database (AGE)
- Geospatial Data support
- Extensive OSS frameworks
- Vibrant community and support

Our data

360 years of United States caselaw

n	(a	51	111	nj	gto
-					

Unique cases

Reporters

581,403 Pages scanned

Federal Totals

1,842,484 Unique cases 75 Reporters

10,409,741 Pages scanned

The caselaw map is keyboand accessible When map is in focus, its states and territories can be navigated with arrow keys.

Legal Research Copilot app

- You're a legal researcher or lawyer focusing on cases in Washington state.
- You need the app to be able to find relevant previous cases to support your tenant rights and property dispute arguments.

Agenda – Build Al Legal App on Postgres

Caselaw Dataset (Washington State)

https://case.law/caselaw/#washington

The Data

```
{
"id": 5295672,
    "name": "George P. Hurd, Appellant, v. Henry Brisner and R. L. Hawthorne, Respondents",
"name_abbreviation": "Hurd v. Brisner",
  "hame_abbreviation": "Hurd V.B
"decision_date": "1891-10-14",
"docket_number": "No. 207",
"first_page": "1",
"last_page": "6",
"citations": [
         "type": "official",
         "cite": "3 Wash. 1"
      }
    ],
"court": {
       "name_abbreviation": "Wash.",
       "id": 9029,
       "name": "Washington Supreme Court"
 },
"jurisdiction": {
    "id": 38,
    "id": "W
      "name_long": "Washington",
"name": "Wash."
  },
"cites_to": [
         "cite": "9 Kan. 632",
         "category": "reporters:state",
"reporter": "Kan.",
          "case_ids": [91904],
          "opinion_index": -1,
          "case_paths": [
            "/kan/9/0632-01"
       },
          "cite": "6 Col. 314",
         "category": "reporters:state",
"reporter": "Col.",
         "opinion_index": -1
       },
          "cite": "47 Iowa, 236",
         "category": "reporters:state",
         "reporter": "Iowa",
"case_ids": [2331774],
          "opinion_index": -1,
          "case_paths": [
            "/iowa/47/0236-01"
      },
         "cite": "34 La. Ann. 407",
         "category": "reporters:state",
"reporter": "La. Ann.",
          "opinion_index": -1
       },
          "cite": "70 Tex. 139",
         "category": "reporters:state",
"reporter": "Tex.",
"case_ids": [2194204],
         "opinion_index": -1,
```

text 🖨	opinion text
Le Vette v. Hardman Estate	"Morris, J.\nAppeal from an order of nonsuit and dismissal, in an action brought by a tenant to recover dar
Wilkening v. Watkins Distributors, Inc.	"[As amended by order of the Court of Appeals October 19, 1989.]\nMunson, J.\nWatkins Distributors, Inc.
Stevens v. King County	"Donworth, J.\nRespondents, as plaintiffs, brought this action against both the city of Seattle and Kang co
Woolworth Co. v. City of Seattle	"Mitchell, J.\nAppellant, plaintiff below, was engaged in the mercantile business in the Arcade Building, in
Uhl Bros. v. Hull	"Holcomb, J.\nAppellant, subtenant of a former lessee of a former owner of certain premises in Seattle, su
Tombari v. City of Spokane	"Millard, J.\nThis action was brought to recover for damages alleged to have been sustained as a result of
Imperial Candy Co. v. City of Seattle	"Main, J.\nThe purpose of this action was to recover damages to personal property caused by the breaking
Frisken v. Art Strand Floor Coverings, Inc.	"Rosellini, J.\nThe respondent, Florence Frisken, is the owner of a building in Shelton, Washington, occupie
Downie v. City of Renton	"Millaed, J.\n-This action was brought to enjoin the city of Renton from discharging waste water from its re-
United Mutual Savings Bank v. Riebli	"Ott, J.\nOctober 30,1954, the Washington Building Company leased "that certain store space known as 10
Cordes v. Guy Investment Co.	"Parker, J.\nThe plaintiff, Cordes, seeks recovery of damages, claimed as the result of the failure of his land
Martindale Clothing Co. v. Spokane & Easter	"Parker, J.\nThis action was commenced by the plaintiff to recover damages claimed to have resulted to it
Miller v. Vance Lumber Co.	"Parker, J.\nThe plaintiffs, Miller and wife, commenced this action in the superior court for King county see
DeHoney v. Gjarde	"Fullerton, J.\nOn April 5, 1922, J. H. DeHoney and wife entered into a contract with Peder P. Gjarde, by the
City of Spokane v. Fisher	"Tolman, J.\nThe city of Spokane was made defendant in a suit for personal injuries, brought by one Nicoli
Wood v. City of Tacoma	"Ellis, J.\nThis is an appeal from a judgment of non-suit and dismissal of an action to recover damages co
Wilber Development Corp. v. Les Rowland C	"Rosellini, J.\nThis is an inverse condemnation action which the trial court dismissed on motions of the de
Wolten Grocery Co. v. Puget Sound Bridge &	"Beals, J.\n- Plaintiff corporation is the owner of a lot in the city of Port.Angeles, lying near the margin of
Swanson v. White & Bollard, Inc.	"Geraghty, J.\nThis is an appeal from a judgment of dismissal entered after the court had sustained a chal

How do we use this data to start building this Legal Copilot App

Search Pattern - ILIKE

SELI	ECT id, name, c	pinion Unt	itled-2					
1 2	SELECT id, I FROM cases	name, opir	nion					
3	WHERE opinio	on ILIKE	'%Water le	eaking into	the apart	ment from	the floor	above';
PROBL	EMS OUTPUT	DEBUG	CONSOLE	TERMINAL	PORTS	AZURE	POSTGRESQL	QUERY RESULTS
Results	Messages							
id		name	^\\\	pinion	\square			

Search Phrase – FULL TEXT

	1	ALTER	TABLE ca	ases							
	2	ADD CO	OLUMN tex	xtsearch tsve	ctor						
	3	GENER	ATED ALW	AYS AS (to_ts	vector(<mark>'e</mark> n	glish',	name	LEFT(opi	nion, 8000)) STORED;	
	4										
	5	SELEC	T id, nar	me, opinion							
	6	FROM (cases								
	7	WHERE	textsea	rch @@ websea	rch_to_tsq	uery('W	later leak	ing into	the apartme	ent from the fl	oor above.');
PI	ROBLE	EMS 3	OUTPU [.]	T DEBUG COM	NSOLE TE	RMINAL	PORTS	AZURE	POSTGRESQI	QUERY RESULTS	SPELL CHECKER 3
											Ŭ
Re	Results Messages										
	id	₽₩	name	₽₽	opinion					↑↓₩	
	1237	124	Dham v	Corbett	"Snearman		n¶1 Landlo	ord Lang	Pham brough	t this u	
·	7237	<u> </u>									

So how do we solve this?

Vector 101

- Lists of numbers that represent items in a high-dimensional space.
- For example, a vector representing the string "dogs" might be [0.7, 0.8, 0.5].
- Each number in the vector is a dimension of the space.

Generating vectors

Use a model to generate vectors for items:

Input	\rightarrow	Model	\rightarrow	Vector
"dog"		word2vec		[0.017198, -0.007493, -0.057982,]
"cat"		word2vec		[0.004059, 0.06719, -0.093874,]

Model	Input types	Dimensions
Word2Vec	Word	50-300
OpenAI text-embedding-3	Text	256-3072
Cohere embed-v4.0	Text	256-1536
Azure Computer Vision Multi-modal	Text or Image	1024

Popular models (find more on <u>HuggingFace</u>)

Visualize Vector https://projector.tensorflow.org/

T

pigs

toy

T

100

0.424

0.496

0.600

0.600

0.604

0.607

0.610

0.627

0.634

0.644

0.646

0.650

0.668

0.670

0.675

Storing vectors in Postgres table

	name ↑↓ ℃	opinions_vector ↑↓ ▽
1	Le Vette v. Hardman Estate	[-0.0016331548,0.061744377,0.009570962,0.035774387,-0.0054566152,0.025488522
2	Uhl Bros. v. Hull	[0.011663684,0.07727938,0.013002017,0.03337608,0.012336588,-0.0059552076,-0
3	Woolworth Co. v. City of Seattle	[0.010754321,0.033327676,0.0031798491,0.037272118,0.005627261,3.528203e-05,
4	Stevens v. King County	[0.003271023,0.02641315,0.052163452,0.04789815,-0.012983223,-0.0027828913,-0
5	Wilkening v. Watkins Distributors, Inc.	[-0.0191751,0.074948214,0.028303407,0.035043657,-0.036456708,0.025124041,0.0
6	Tombari v. City of Spokane	[0.013072358,0.0324271,0.008165626,0.063088655,0.0021425574,0.0009784038,-0
7	Downie v. City of Renton	[0.031188406,0.055722144,0.019521315,0.056150556,-0.008168392,-0.010131948,
8	Frisken v. Art Strand Floor Coverings, Inc.	[0.0037472202,0.041518908,-0.0063951095,0.04394401,0.011329315,-0.0045397608
9	Imperial Candy Co. v. City of Seattle	[0.017007183,0.03166547,0.022344228,0.04451006,-0.017914034,0.01880602,-0.03
10	City of Spokane v. Fisher	[0.0014129812,0.03918049,0.00015752178,0.038623422,0.024062268,0.008920834,

-- Add Embeddings
ALTER TABLE cases ADD COLUMN opinions_vector vector(1536);
UPDATE cases
SET opinions_vector = azure_openai.create_embeddings('text-embedding-3-small',
name || opinion, max_attempts => 5, retry_delay_ms => 500)::vector
WHERE opinions_vector IS NULL;

Storing vectors in Postgres table

	name ↑↓ 🍸	opinions_vector ↑↓ ⑦
1	Le Vette v. Hardman Estate	[-0.0016331548,0.061744377,0.009570962,0.035774387,-0.0054566152,0.025488522
2	Uhl Bros. v. Hull	[0.011663684,0.07727938,0.013002017,0.03337608,0.012336588,-0.0059552076,-0
3	Woolworth Co. v. City of Seattle	[0.010754321,0.033327676,0.0031798491,0.037272118,0.005627261,3.528203e-05,
4	Stevens v. King County	[0.003271023,0.02641315,0.052163452,0.04789815,-0.012983223,-0.0027828913,-0
5	Wilkening v. Watkins Distributors, Inc.	[-0.0191751,0.074948214,0.028303407,0.035043657,-0.036456708,0.025124041,0.0
6	Tombari v. City of Spokane	[0.013072358,0.0324271,0.008165626,0.063088655,0.0021425574,0.0009784038,-0
7	Downie v. City of Renton	[0.031188406,0.055722144,0.019521315,0.056150556,-0.008168392,-0.010131948,
8	Frisken v. Art Strand Floor Coverings, Inc.	[0.0037472202,0.041518908,-0.0063951095,0.04394401,0.011329315,-0.0045397608
9	Imperial Candy Co. v. City of Seattle	[0.017007183,0.03166547,0.022344228,0.04451006,-0.017914034,0.01880602,-0.03
10	City of Spokane v. Fisher	[0.0014129812,0.03918049,0.00015752178,0.038623422,0.024062268,0.008920834,

-- Add Embeddings ALTER TABLE cases ADD COLUMN opinions_vector vector(1536); UPDATE cases SET opinions_vector = azure_openai.create_embeddings('text-embedding-3-small', name || opinion, max_attempts => 5, retry_delay_ms => 500)::vector WHERE opinions_vector IS NULL; azure_ai

Search Phrase – Vector Search

PRODUCING CONTON DEDUCCONJOLL PERMINAL PORTS AZONE POSTONESQE QUENT NESCENS SPELL	PROBLEMS	OUTPUT	DEBUG CONSOLE	TERMINAL	PORTS	AZURE	POSTGRESQL QUERY RESULTS	SPELL CHECKE
---	----------	--------	---------------	----------	-------	-------	--------------------------	--------------

Results Messages

Open in New Tab [7

	id î↓Ƴ	name ↑↓ 🍸	opinion ↑↓ 🍸
1	615468	Le Vette v. Hardman Estate	"Morris, J.\nAppeal from an order of nonsuit and dism…
2	768356	Uhl Bros. v. Hull	"Holcomb, J.\nAppellant, subtenant of a former lessee…
3	674990	Woolworth Co. v. City of Seattle	"Mitchell, J.\nAppellant, plaintiff below, was engage…
4	4938756	Stevens v. King County	"Donworth, J.\nRespondents, as plaintiffs, brought th…
5	8848167	Wilkening v. Watkins Distributors, Inc.	"[As amended by order of the Court of Appeals October…
6	1346648	Tombari v. City of Spokane	"Millard, J.\nThis action was brought to recover for …
7	838633	Downie v. City of Renton	"Millaed, J.\n-This action was brought to enjoin the …
8	5041745	Frisken v. Art Strand Floor Coverings, Inc.	"Rosellini, J.\nThe respondent, Florence Frisken, is …
9	630224	Imperial Candy Co. v. City of Seattle	"Main, J.\nThe purpose of this action was to recover …
10	685636	City of Spokane v. Fisher	"Tolman, J.\nThe city of Spokane was made defendant i…

位 {}

> →> L⊞

RAG 101

RAG stands for **Retrieval-Augmented Generation**. It's a technique used to enhance the output of large language models (LLMs) by integrating external knowledge sources.

Two Problems in Information Retrieval

Problem #1: Scale Efficiently scaling vector stores to 1M+ of vectors is hard.

Problem #2: Accuracy Quality of GenAl app responses and vector search accuracy need to improve. Solving Problem #1 – Scale with Vector Indexing

Vector indexes popular today

IVFFlat

- Clusters vectors by applying k-means clustering.
- Memory efficient but requires index rebuilds.

HNSW

- Builds a multi-layer graph with long and short connections between the vectors.
- The graph can be incrementally updated.

Vector indexes popular today

IVFFlat

- Clusters vectors by applying k-means clustering.
- Memory efficient but requires index rebuilds.

Generally speaking... IVFFLAT does its best work for larger datasets with low dimensionality.

HNSW

- Builds a multi-layer graph with long and short connections between the vectors.
- The graph can be incrementally updated.

Generally speaking... HNSW does its best work for smaller datasets with high dimensionality.

Vector indexes popular today

IVFFlat

- Clusters vectors by applying k-means clustering.
- Memory efficient but requires index rebuilds.

HNSW

- Builds a multi-layer graph with long and short connections between the vectors.
- The graph can be incrementally updated.

Generally speaking... IVFFLAT does its best work for larger datasets with low dimensionality. Generally speaking... HNSW does its best work for smaller datasets with high dimensionality.

What do you do for <u>large datasets</u> with <u>high dimensionality</u>?

DiskANN Vector Index

Highly performant, scalable, and accurate index for vectors

Superior to IVFLAT and HNSW

Reduced memory footprint with quantization and storing SSD

Huge **cost savings** at scale due to reduced memory footprint.

DiskANN vs HNSW index size

Schema	-# \dl+ cases_*	Туре	List Owner	of relations Persistence	Access method	Size	Dription
public public	cases_diskann cases_hnsw	table table	postgres postgres	permanent permanent	heap heap	6276 MB 6276 MB	I
public public public (5 rows)	cases_metadata cases_no_index cases_playground	table table table	postgres postgres postgres	permanent permanent permanent	heap heap heap	13 GB 6276 MB 3896 kB	

postgres=# \di+ cases_*

List of relations Schema Name Table Persistence | Access method Size Type 0wner cases_diskann_description_vector_idx1 public index postgres cases_diskann permanent diskann 150 MB cases_hnsw_description_vector_idx public index postgres cases_hnsw permanent hnsw 3688 MB public cases_metadata_pkey postgres cases_metadata permanent btree 207 MB index public cases_pkey index postgres cases permanent btree MB (4 rows)

Using DiskANN

- Now, let's dive into
 DiskANN for your vector
 data
- We can create an index on the vector column, so we can do faster searching on the vector data.

CREATE INDEX ON cases USING diskann (opinion_vec vector_cosine_ops)

-- Create DiskANN index to improve search times

Solving Problem #2 – Accuracy with Advanced RAG architectures

Improving Accuracy of GenAl apps

Basic RAG

- Chunking strategies
- Bigger embeddings
- Query rewriting
- Hybrid search
- Metadata filtering

Advanced RAG

- Semantic Ranking
- Hierarchical summarization (RAPTOR)
- Knowledge graphs (GraphRAG)
- Agentic systems

GraphRAG Overview

Project GraphRAG: aka.ms/graphrag

GraphRAG Steps

Legal Research Copilot Solution

Graph extraction

1

- ² Entity summarization
- 3 Graph query generation at query time
- -----> Pre-extracted citation graph
- ----> Entity summarization
 - \rightarrow Specialized graph query

Apache AGE Graph database extension for PostgreSQL

Graph database Plugin for PG Cypher + SQL Hybrid Queries Fast Graph Processing Graph Visualization & Analytics

Example Constructed Case Graph

Advanced Retrieval Technique - GraphRAG

- GraphRAG uses knowledge graphs to improve results in complex scenarios, by leveraging relationships
- For example, "Water leaking into the apartment from the floor above. What are the **prominent legal precedents** in Washington on this problem?"

```
graph AS (
  SELECT * from vector_search_ranked
  JOIN cypher('case graph', $$
    MATCH ()-[r]->(n)
    RETURN n.case_id, COUNT(r) AS refs
  $$) as graph_query(case_id TEXT, refs
BIGINT)
  ON vector search ranked.id =
graph query.case id
```


GraphRAG Solution Accelerator for Postgres

Overview

- Legal Research Copilot app
- U.S. Case Law dataset (0.5 million cases)

Available Now!

- Blog: aka.ms/pg-graphrag
- Repo: aka.ms/pg-graphrag-repo

Azure Database for PostgreSQL: Al-Ready for Enterprise Applications

More Resources

Azure Postgres and Al Agents

• aka.ms/pg-ai-agents-blog

Postgres AI Solution Accelerators

- <u>aka.ms/postgres-semantic-ranker</u>
- <u>aka.ms/postgres-graphrag-solution</u>
- <u>aka.ms/pg-byoac-docs</u>

Read the Azure Postgres blog

• <u>aka.ms/azurepostgresblog</u>