


ABE OMOROGBE

• Product Manager at Postgres AI 
team at Microsoft.

• My previous experiences includes 
working Azure AI and Databricks

 @_aiabe
 linkedin.com/in/abeomor
 github.com/AbeOmor



Has ChatGPT or Copilot 
ever given you an 

insufficient answer?
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Benefits of Postgres for your GenAI app?

PostgreSQL offer features critical in 
building an AI app:

• AI model integration (azure_ai)

• Vector Search Capabilities (pgvector)

• Unstructured data support (JSONB)

• Graph Database (AGE)

• Geospatial Data support

• Extensive OSS frameworks

• Vibrant community and support

Postgres is the #1 developer database according to StackOverflow



Legal Research Copilot app

• You’re a legal researcher or lawyer 
focusing on cases in Washington 
state.

• You need the app to be able to 
find relevant previous cases to 
support your tenant rights and 
property dispute arguments.
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Caselaw Dataset (Washington State)

106,177 
unique cases

7 
legal reporters

581,403                    
pages scanned

https://case.law/caselaw/#washington



The Data
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How do we use this data to start 
building this Legal Copilot App



Search Pattern - ILIKE



Search Phrase – FULL TEXT



So how do we solve this?
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Vector 101

• Lists of numbers that represent 
items in a high-dimensional 
space.

• For example, a vector 
representing the string “dogs" 
might be [0.7, 0.8, 0.5].

• Each number in the vector is a 
dimension of the space.



Generating vectors

Use a model to generate vectors for items:

Input → Model → Vector
"dog" word2vec [0.017198, -0.007493, -0.057982, ..]
"cat" word2vec [0.004059, 0.06719, -0.093874, ...]

Model Input types Dimensions
Word2Vec Word 50-300
OpenAI text-embedding-3 Text 256-3072
Cohere embed-v4.0 Text 256-1536
Azure Computer Vision Multi-modal Text or Image 1024

Popular models (find more on HuggingFace)

https://huggingface.co/spaces/mteb/leaderboard


Visualize Vector

https://projector.tensorflow.org/

https://projector.tensorflow.org/


Storing vectors in Postgres table

-- Add Embeddings
ALTER TABLE cases ADD COLUMN opinions_vector vector(1536);
UPDATE cases
SET opinions_vector = azure_openai.create_embeddings('text-embedding-3-small', 
name || opinion, max_attempts => 5, retry_delay_ms => 500)::vector
WHERE opinions_vector IS NULL;



Storing vectors in Postgres table

-- Add Embeddings
ALTER TABLE cases ADD COLUMN opinions_vector vector(1536);
UPDATE cases
SET opinions_vector = azure_openai.create_embeddings('text-embedding-3-small', 
name || opinion, max_attempts => 5, retry_delay_ms => 500)::vector
WHERE opinions_vector IS NULL;

pgvector

azure_ai



Search Phrase – Vector Search
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RAG 101

RAG stands for Retrieval-Augmented 
Generation. It's a technique used to enhance 

the output of large language models (LLMs) by 
integrating external knowledge sources.



Two Problems in Information Retrieval

Problem #1: Scale 
 Efficiently scaling vector 

stores to 1M+ of vectors is 
hard.

Problem #2: Accuracy 
Quality of GenAI app responses 

and vector search accuracy 
need to improve.



Solving Problem #1 – Scale 
with Vector Indexing



IVFFlat

• Clusters vectors by applying k-means clustering.

• Memory efficient but requires index rebuilds.

Vector indexes popular today

HNSW

• Builds a multi-layer graph with long and short 

connections between the vectors.

• The graph can be incrementally updated.
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for smaller datasets with high dimensionality.



IVFFlat

• Clusters vectors by applying k-means clustering.

• Memory efficient but requires index rebuilds.

Vector indexes popular today

HNSW

• Builds a multi-layer graph with long and short 

connections between the vectors.

• The graph can be incrementally updated.

Generally speaking… IVFFLAT does its best 
work for larger datasets with low 

dimensionality.

Generally speaking… HNSW does its best work 
for smaller datasets with high dimensionality.

What do you do for large datasets 
with high dimensionality?



RAM
Compressed vectors

Optimized storage

SSD
Full vectors + graph

Large Vectors
{ D1, D2, D3, D4, D5, …, D99, D100 }

Vector compression

Quantization

Compressed Vectors
{ D1, D2 .., D100 }

DiskANN Vector Index

Highly performant, scalable, and 
accurate index for vectors

Superior to IVFLAT and HNSW 

Reduced memory footprint with 
quantization and storing SSD

Huge cost savings at scale due to 
reduced memory footprint.



DiskANN vs HNSW index size 



Using DiskANN

Now, let’s dive into 
DiskANN for your vector 
data

We can create an index on 
the vector column, so we 
can do faster searching on 
the vector data.

CREATE INDEX ON cases USING diskann 
(opinion_vec vector_cosine_ops) 

-- Create DiskANN index to improve search 
times



Solving Problem #2 – Accuracy 
with Advanced RAG architectures
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Improving Accuracy of GenAI apps

Basic RAG

• Chunking strategies

• Bigger embeddings

• Query rewriting

• Hybrid search

• Metadata filtering

Advanced RAG

• Semantic Ranking

• Hierarchical summarization 
(RAPTOR)

• Knowledge graphs (GraphRAG)

• Agentic systems



GraphRAG
Overview

Data

Graph 
extraction

“Create a quiz with 
10 questions based 

on xyz data”

Graph 
query generation

Entity summarization

1

2

3
Graph

Project GraphRAG: aka.ms/graphrag



GraphRAG Steps

1. Graph extraction

2. Entity summarization

3. Graph query generation at query 
time

Pre-extracted citation graph
Entity summarization
Specialized graph query

Legal Research Copilot Solution

1

2

3



Apache AGE
Graph database extension for PostgreSQL

Graph database 
Plugin for PG

Cypher + SQL 
Hybrid Queries

Fast Graph 
Processing

Graph Visualization 
& Analytics



Example Constructed Case Graph



Advanced Retrieval Technique - GraphRAG

GraphRAG uses knowledge 
graphs to improve results in 
complex scenarios, by 
leveraging relationships

For example, “Water leaking 
into the apartment from the 
floor above. What are the 
prominent legal precedents in 
Washington on this problem?”

graph AS (

  SELECT * from vector_search_ranked

  JOIN cypher('case_graph', $$

    MATCH ()-[r]->(n)

    RETURN n.case_id, COUNT(r) AS refs

  $$) as graph_query(case_id TEXT, refs 
BIGINT)

  ON vector_search_ranked.id = 
graph_query.case_id

)



Use RRF to combine 
Graph and 
Reranked results.





GraphRAG Solution Accelerator for Postgres

Overview
• Legal Research Copilot app
• U.S. Case Law dataset (0.5 million cases)

Available Now!
• Blog: aka.ms/pg-graphrag 
• Repo: aka.ms/pg-graphrag-repo

Data

“Water leaking 
from the floor 

above…”

User query

embeddings

Chat

Apache AGE

extension

Prompt + context

Graph + vector 

database

GraphRAG

Graph

Summarization

Vector search 

+ graph query

Azure Database 
for PostgreSQL OpenAI



Extensions

JSONB

Full text 

search Geospatial

Rich 

indexing

Rich Data 

types

ACID

Constraints

Management 

Automation

Extension 

support 

Global 

reach 

Security

Scale up 

& out

High

Availability

Compliance 

Intelligent 

performance

Ecosystem 

integration

AIAzure Database 
for PostgreSQL:
AI-Ready 
for Enterprise 
Applications



More Resources

Azure Postgres and AI Agents
• aka.ms/pg-ai-agents-blog

Postgres AI Solution Accelerators
• aka.ms/postgres-semantic-ranker 

• aka.ms/postgres-graphrag-solution

• aka.ms/pg-byoac-docs 

Read the Azure Postgres blog
• aka.ms/azurepostgresblog

https://aka.ms/postgres-semantic-ranker
https://aka.ms/postgres-semantic-ranker
https://aka.ms/postgres-semantic-ranker
https://aka.ms/postgres-semantic-ranker
https://aka.ms/postgres-semantic-ranker
https://aka.ms/postgres-semantic-ranker
https://aka.ms/postgres-graphrag-solution
https://aka.ms/postgres-graphrag-solution
https://aka.ms/postgres-graphrag-solution
https://aka.ms/postgres-graphrag-solution
https://aka.ms/postgres-graphrag-solution
https://aka.ms/postgres-graphrag-solution
aka.ms/azurepostgresblog
aka.ms/azurepostgresblog
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