
Building a Postgres Data Warehouse

Marco Slot

POSETTE ‘25

Citus is a PostgreSQL extension that can distribute tables across a cluster of PostgreSQL
servers.

items
users

items
users

Schema changes
Queries (reads & writes) Queries (reads & writes) Queries (reads & writes)

items
users

node 0 node 1 node 2

Multi-tenant SaaS apps
Real-time analytics

Past project: Citus

OLTP OLAP

Operational system of record

SQL

Transactions

High query rate, small queries

Low response time

User-facing applications

Mission-critical, always on

Analytics on collection of data sources

SQL

Transactions

Low query rate, big queries

High scan throughput

Business-facing dashboards

On demand, business hours

Row-oriented storage & execution Column-oriented storage & execution

SELECT * FROM orders
WHERE orderid = $1 SELECT productid, count(*) FROM orders

GROUP BY 1 ORDER BY 2 DESC LIMIT 10

At scale: Slow on OLTP, Fast on OLAP

Row-oriented vs. columnar-oriented

At scale: Fast on OLTP, Slow on OLAP

Vectorized query engine takes vectors of column values and processes them in loops.

Several benefits:

• Low function call overhead

• Better branch prediction

• Good CPU cache utilization

• SIMD

Many vectors processed in parallel.

2
7

b > 0.4

Find matching indices

Select indices

select … from t where b > 0.4 …

Column-oriented storage & vectorized execution

PostgreSQL

Hybrid OLTP/OLAP architecture

DuckDB

SQL

Extensions

Extending PostgreSQL

Utility command hook

Query planner hooks

CustomScan

Foreign data wrapper

Table access method

DDL

Queries

Writes

Hybrid table storage

Different methods of storing analytics tables

Blob

storage

Cache

Cache

DuckDB tables on disk? Files in object storage?PostgreSQL Buffer Manager & WAL?

PostgreSQL as an Iceberg query engine & catalog.

Extensions add an Iceberg table type.

Writes generate Parquet & Iceberg metadata.

Reads query Parquet using DuckDB.

Iceberg files will still be available to replicas.

Iceberg catalog is in WAL, replicated.

Postgres + Apache Iceberg

Crunchy Data Warehouse

PostgreSQL with Iceberg and external data lake tables.

10-100x faster for analytics by integrating DuckDB and write-through file caching.

Constellation of Postgres Extensions

Add new Postgres user experiences through many small, composable extensions.

Iceberg as a Postgres table format

Capture queries, writes, & schema changes to provide a transactional table experience for
Iceberg in S3.

create table chats (
message_id bigserial not null,
thread_id bigint not null,
…

) using iceberg;

…
update chats set answer = '42'
where question is null;

select count(*) from chats;

Write metadata (avro, json) files to blob storage, insert to catalog

SELECT * FROM read_parquet(…, filename=…, file_row_number=…)
WHERE question IS NULL;

Write updated rows into new Parquet file.
Write deleted rows into position delete Parquet file.
Write metadata (avro, json) files to blob storage, update catalog

SELECT count(*)
FROM read_parquet(…, schema=…, filename=…, file_row_number=…))
WHERE (filename, file_row_number)
NOT IN (SELECT (file_path, pos) FROM read_parquet(…));

Extending the Postgres query planner

Extensions can propose or enforce alternative plans for whole query or fragments.

Whole query

ORDER BY

DISTINCT

Window functions

Grouping & aggregation

Joins

Scan

with top10 as (
select cust_id, sum(…)
from sales
where …
group by 1
order by 2 desc limit 10

)
select pg_func(cust_id)
from top10;

Extending the Postgres query planner

Extensions can propose or enforce alternative plans for whole query or fragments.

Whole query

ORDER BY

DISTINCT

Window functions

Grouping & aggregation

Joins

Scan

with top10 as (
select cust_id, sum(…)
from sales
where …
group by 1
order by 2 desc limit 10

)
select pg_func(cust_id)
from top10;

Extending the Postgres query planner

Extensions can propose or enforce alternative plans for whole query or fragments.

Whole query

ORDER BY

DISTINCT

Window functions

Grouping & aggregation

Joins

Scan

with top10 as (
select cust_id, sum(…)
from sales
where …
group by 1
order by 2 desc limit 10

)
select pg_func(cust_id)
from top10;

CteScan
pg_func(cust_id)

CustomScan (DuckDB)

select …
from read_parquet(…)
where …
group by …
order by … desc limit 10

Hybrid architecture

Block storage
Object storage

Application
SQL SQL

Transactions (heap, catalog) Parquet queries

File cache on NVMe drive

Iceberg to heap performance comparison

>50x faster on ClickBench >10x faster on TPC-H

Zero-ETL log management

Incrementally & transactionally

load new files into Iceberg

Query Iceberg using SQL

-- Create a table to query JSON logs (infer columns)
create foreign table logs ()
server crunchy_lake_analytics
options (path 'az://crunchy-bridge/logs/*.json.gz', filename 'true');

-- Create an Iceberg table with the same schema
create table logs_iceberg (like logs)
using iceberg;

-- Set up a pg_incremental job to process new & existing files

select incremental.create_file_list_pipeline('process-logs',
file_pattern := 'az://crunchy-bridge/logs/*.json.gz',
batched := true,
command := $$

insert into logs_iceberg
select * from logs where _filename = any($1)

$$);

Blob

storage

json Iceberg (cached)

SQL

Logical replication from Postgres to Iceberg

CREATE SUBSCRIPTION sub
CONNECTION 'host=... '
PUBLICATION pub
WITH (create_tables_using 'iceberg');

CREATE PUBLICATION pub
FOR TABLE orders, customers;

Source (any postgres): Destination (Crunchy Data Warehouse):

Auto-create Iceberg tables, if not exists

Copy initial data

Replicate changes (insert, update, delete, truncate)

Periodically flush change batches to Iceberg

Automatic compaction

Summary

PostgreSQL can offer a comprehensive data warehouse/lakehouse experience with
Iceberg and full transaction support.

Fast analytical queries by integrating DuckDB and write-through caching.

Iceberg SQL catalog protocol is supported for external query engines.

Crunchy Data Warehouse is the first production-ready solution.

Let’s see how it goes ☺

Questions?

marco.slot@crunchydata.com

Crunchy Data blog

	Default Section
	Slide 1: Building a Postgres Data Warehouse
	Slide 2
	Slide 3: OLTP OLAP
	Slide 4: Row-oriented vs. columnar-oriented
	Slide 5: Column-oriented storage & vectorized execution
	Slide 6: Hybrid OLTP/OLAP architecture
	Slide 7: Extending PostgreSQL
	Slide 8: Hybrid table storage
	Slide 9
	Slide 10: Crunchy Data Warehouse
	Slide 11: Constellation of Postgres Extensions
	Slide 13: Iceberg as a Postgres table format
	Slide 14: Extending the Postgres query planner
	Slide 15: Extending the Postgres query planner
	Slide 16: Extending the Postgres query planner
	Slide 17: Hybrid architecture
	Slide 18: Iceberg to heap performance comparison
	Slide 19: Zero-ETL log management
	Slide 20: Logical replication from Postgres to Iceberg
	Slide 21
	Slide 22: Summary
	Slide 23: Questions?

