
C
onfidential

Scaling Postgres to the next level 
at OpenAI

Bohan Zhang
Member of Technical Staff, OpenAI
bohan@openai.com

Acknowledgements: Sicheng Liu, Chaomin Yu, Chenglong Hao, Dmitri Petrov, Kai Wang, Qi Xu, 
Jon Lee, Stas Llinskiy, Ben Ries, Venkat Venkataramani and many more at OpenAI infra team

1

https://www.linkedin.com/in/veeve


C
onfidential

Member of Technical Staff @ OpenAI

      Cofounder @ OtterTune (CMU spin-off)

Researcher @ Carnegie Mellon Database Group

About Myself

2



C
onfidential

Background

● Postgres is the backbone of our most critical systems at OpenAI
○ If Postgres goes down, many of our key features become unavailable

○ Postgres related incidents have had a significant impact to services like 

ChatGPT in the past

● Scaling Postgres to meet OpenAI’s demands is no trivial task
○ We operated on a single primary instance in Azure without sharding for a 

long time 

○ until we encountered write scalability limits…

3



C
onfidential

Background

● In a single-primary, multiple-replica architecture, write scalability 
remains a bottleneck
○ Move write-heavy workloads that are shardable to other systems

○ New tables and workloads are not allowed

○ We did lots of optimizations to ensure the current architecture has sufficient 

runway to support existing read-heavy workloads and future growth

● Postgres is not ideal for write-heavy workloads. But for OpenAI’s 

read-heavy workloads, it can scale exceptionally well

4



C
onfidential

Challenges in write-heavy workloads

● Known Issues in Postgres MVCC design[1]

○ Table and index bloat

○ Autovacuum tuning complexities

○ Version churn from tuple copying

○ Increased index maintenance overhead

● Difficult to scale read replicas

○ Write-heavy workloads generate more WAL to ship, increasing replica lag

○ The problem worsens as the number of replicas grows — network bandwidth can 

become a bottleneck
[1]  Bohan Zhang, Andy Pavlo: The part of PostgreSQL we hate the most (Apr 26, 2023)

5

https://bohanzhang.me/assets/blogs/hate_the_most/hate_the_most.html


C
onfidential

Read-heavy workloads are still served by 
Unsharded Postgres in Azure

But How?

6



C
onfidential

● Why Postgres Remains Unsharded

● Shardable, write-heavy workloads have already been migrated to other systems.

● New tables are no longer allowed in Postgres. For feature additions that require new 
tables, use alternative systems.

● Sharding current workloads in Postgres is difficult due to the complexity of migrating 
hundreds of application endpoints.

● Current workloads are read-heavy, and with careful optimizations, the existing 
architecture has sufficient runway.

● Sharding is not a near-term priority but remains a possibility for the future.

7



C
onfidential

Reduce Load on Primary

● Mitigate write spikes in primary
○ Migrate write-heavy workloads that were shardable from Postgres to other systems 

○ Reduce the number of writes at the application level. We also identified bugs in the 
application that generate unnecessary writes

○ Use lazy writes where possible to smooth out write spikes

○ Set a rate limit when backfilling a field

● Offload read queries from the primary to read replicas
○ Offload read queries from the primary whenever possible to reduce primary load 

○ Some reads cannot be moved due to transactions. Make sure those queries are 
efficient in primary

8



C
onfidential

Query Optimization

● Avoid long running idle queries by setting timeout
○ Long-running queries can block autovacuum and consume resources

○ Set idle_in_transaction_session_timeout
○ Set statement_timeout

○ Set client side timeout

● Avoid OLTP query anti-patterns
○ We observed multi-way joins in Postgres queries, with the most expensive query 

joining 12 tables. Spikes in such queries have previously led to SEVs.
○ Avoid expensive multi-way joins by handling joins at the application level.

○ Developing with an ORM can easily lead to inefficient queries. Use it carefully!

9



C
onfidential

Single Point of Failure

● The primary instance can be a single point of failure
○ We have a single writer; if it goes down, no writes can be performed

○ We have many read replicas; if one fails, applications can still read from others

○ Most critical requests are read-only and can continue to operate by fetching data 
from read replicas if the primary fails (SEV2)

● Low priority vs High priority requests
○ Categorize requests by priority. High-priority requests have a far greater impact 

on users when unavailable (SEV0), compared to low-priority ones (SEV2)
○ Allocate dedicated read replicas for high-priority requests to prevent them from 

being impacted by low-priority ones

10



C
onfidential

Rate Limit

● A surge from a single expensive query can bring down the entire 
instance
○ We had some expensive queries running on the primary (like 12-way joins), the 

volume was typically low

○ A sudden spike in one of these queries took down the entire instance

● Rate Limiter
○ Rate limit application-level functions to reduce load during peak traffic

○ Rate limit the creation of new connections to prevent connection pool exhaustion

○ Rate limit specified query digests to control the impact of expensive queries

11



C
onfidential

Connection Pooling

● PGBouncer as Postgres Proxy
○ Acts as a connection pool, enabling 

connection reuse
○ Can significantly reduce connection 

latency (~5ms vs. 50ms)
○ Reduces the number of connections, 

which is important given the 5k 
connection limit on the primary

○ If a read replica fails, traffic is 
automatically rerouted to other 
available replicas

12



C
onfidential

Schema Management

● Only lightweight schema changes are permitted
○ Creating new tables or introducing new workloads in Postgres is not allowed 

○ We allow adding / removing columns in tables (with 5-seconds timeout).  Any 
changes that require a table rewrite are not allowed

○ Indexes can be added or dropped concurrently

● Schema changes can be blocked by consistent queries
○ If long-running queries (e.g., >1s) are consistently present on the target table, the 

migration may fail
○ Fix those queries in applications, or move them to read replicas

○ SELECT  * FROM pg_stat_activity WHERE  query like '%table_name%' and  
now() - query_start > interval '1 seconds'

13



C
onfidential

Results

● Scaled Azure PostgreSQL to millions of QPS, powering OpenAI's 
critical services

● Added dozens of read replicas with no increase in replication lag

● Maintained low-latency across geo-distributed read replicas

● Only one SEV-0 incident involving PostgreSQL in the past 9 months

● Sufficient capacity headroom to sustain future growth

14

Huge thanks to the Azure PostgreSQL team for their unwavering support along this journey!



C
onfidential

Thank you

15


