
© E D B 2 0 2 4 - 2 0 2 5 — A L L R I G H T S R E S E R V E D .

Incremental Backup in PostgreSQL 17

Robert Haas
VP, Chief Architect, Database Servers
POSETTE 2025 | June 10, 2025

© E D B 2 0 2 4 - 2 0 2 5 — A L L R I G H T S R E S E R V E D

Overview & Motivation
▪ Backing up large databases can be very challenging, with backup times sometimes exceeding

one day.

▪ Instead of copying the entire database when we make a backup, let’s try to copy only the
portions of the database that have changed. By doing this, we can make backups smaller and
therefore faster.

▪ Various out-of-core tools and proprietary forks of PostgreSQL have provided features like this
in the past, but we have not had anything in PostgreSQL itself.

▪ Disclaimer: This is still a new feature and, like any code, it might have bugs. Please try it, but
please be careful!

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Taking an Incremental
Backup

© E D B 2 0 2 4 - 2 0 2 5 — A L L R I G H T S R E S E R V E D

Basic Usage
▪ In postgresql.conf (or using ALTER SYSTEM), set summarize_wal = on.

• Reload the configuration (or restart the server).

▪ pg_basebackup -c fast -D sunday
• Full backup.
• Use -c fast for testing to speed it up, but maybe not on a production system.

▪ pg_basebackup -c fast -D monday --incremental sunday/backup_manifest
• Incremental backup based on Sunday’s full backup.

▪ pg_basebackup -c fast -D tuesday --incremental sunday/backup_manifest
pg_basebackup -c fast -D tuesday --incremental monday/backup_manifest

• Incremental backup based on either on Sunday’s full backup or Monday’s incremental
backup.

© E D B 2 0 2 4 - 2 0 2 5 — A L L R I G H T S R E S E R V E D

Tooling
▪ Writing your own backup scripts is a bad idea!

▪ Use a quality backup tool that supports whatever you want to do.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Architecture

© E D B 2 0 2 4 - 2 0 2 5 — A L L R I G H T S R E S E R V E D

Knowing What Has Changed: Requirements
▪ Accurate. If we think something has not changed when actually it did, then we will not include it

in the backup and our data will be lost. If we think something has changed when it didn’t really,
that will not break anything but our backups will be larger.

▪ Efficient. It should be possible to determine what has changed without much effort.

▪ Easy to Implement. Reuse as much existing code as possible so that we don’t have to write and
debug too much new code.

▪ Not Reliant on OS Features. Especially, I like to avoid relying on things that work differently on
different operating systems. Also, if something is entirely internal to PostgreSQL, it’s easier to
debug problems than if some of it is controlled at the OS level.

© E D B 2 0 2 4 - 2 0 2 5 — A L L R I G H T S R E S E R V E D

The Write-Ahead Log To The Rescue!
▪ PostgreSQL’s write-ahead log contains all the information about which blocks have been

modified.

▪ It’s already used for many other purposes and has existing debugging tools like pg_waldump
and pg_walinspect.

▪ However, the write-ahead log is very big, so we can’t use it directly.

▪ Instead, we add a new WAL summarizer process which will read the WAL as it’s generated and
produce small WAL summary files containing only the information that is required for
incremental backup.

▪ Together with the backup manifest, this gives us everything we need in order to identify
changed blocks and files.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Restoring an
Incremental Backup

© E D B 2 0 2 4 - 2 0 2 5 — A L L R I G H T S R E S E R V E D

Using pg_combinebackup
▪ Consider this example again:

pg_basebackup -c fast -D sunday
pg_basebackup -c fast -D monday --incremental sunday/backup_manifest
pg_basebackup -c fast -D tuesday --incremental monday/backup_manifest

▪ Everything that has changed between Monday and Tuesday is in the tuesday backup.

▪ Everything that has changed between Sunday and Monday is in the monday backup.

▪ Everything else is in the sunday backup.

▪ So we will need all three backups in order to restore:
pg_combinebackup sunday monday tuesday -o tuesday_full

© E D B 2 0 2 4 - 2 0 2 5 — A L L R I G H T S R E S E R V E D

Recovery Is Still Required!
▪ The output of pg_combinebackup is a full backup.

▪ When you start postgres on any full backup whatsoever, database recovery is required.
• If the required WAL is present in the backup’s pg_wal directory, then you can just start the

server and it will perform recovery as normal.
• Otherwise, you need to create recovery.signal or standby.signal and set
primary_conninfo and/or restore_command just as you normally would.

▪ Incremental backup does not let you skip any step that would otherwise be required.

▪ Again, it’s a good idea to leave this orchestration up to a well-written backup tool!

© E D B 2 0 2 4 - 2 0 2 5 — A L L R I G H T S R E S E R V E D

Summary
▪ summarize_wal = on runs the new WAL summarizer process, which will read the

write-ahead log and write small WAL summary files

▪ pg_basebackup --incremental $BACKUP_MANIFEST uses the data in the backup
manifest and the WAL summary files to create an incremental backup.

▪ pg_combinebackup reconstructs a synthetic full backup. Recovery is still required!

▪ Backup catalog, backup retention, etc. are out of scope for this feature; use external tools.

© E D B 2 0 2 4 — A L L R I G H T S R E S E R V E D .

Thank you!

Any questions?

